Institute for Combustion and Gas Dynamics

Fluid Dynamics

UNIVERSITÄT DUISBURG ESSEN

Offen im Denken

A temporal fluids-parcel backwards-tracking method for the study of cyclical variations

Linus Engelmann, Andreas Kempf

Lehrstuhl Fluiddynamik, Institut für Verbrennung und Gasdynamik Universität Duisburg-Essen, Germany

UNIVERSITÄT DUISBURG ESSEN

Offen im Denken

Content

- Background
- Method
- Numerical setup
- Results

Institute for Combustion and Gas Dynamics

Background

Assesment of cyclical variations

- Aim is the assessment of cyclical variations
- Study focuses on convectively transported causes of CCV
- Flowfield and mixture composition during the ignition are crucial of the flame formation and propagation -> used for this study
- Temporal recreation of momentum and scalar fields is highly memory intensive
- Identify fluid which is involved in an event of interest (e.g. ignition)
- (directly on the run or using a restart)
- Simulate the parcels as Lagrangian Particles

Workflow

Lagrangian Tracers – Manifold initialization

- Tracers are randomly generated in the intake manifolds
- Tracers are transported convectively
- (Detect particles nearby spark-plug during ignition)
- (Save particles to a protocol file)
- (Restart simulation and load particles from file)
- Save temporal and spatial information to a file
- Reconstruct fluid-/thermodynamical trajectory

Simulation procedure

All tracers

Detected tracers

Numerical solver

PsiPhi

- In-house code
- FVM for (in)compressible NSE
- Equidistant cubic grid
- Low-storage Runge-Kutta scheme for time integration
- Flexible choice of turbulence models (Smagorinsky, SES, Sigma, Clark, KKK1/2)
- Has been compared with other codes and many experiments
- Used in this study:
 - CDS8 stabilized using a tenth-order filter
 - Sensor-enhanced Smagorinsky model

UNIVERSITÄT

_S_B_U R G

Offen im Denken

Comparisons of the flow field

- Darmstadt Engine (Operation point C) used for reference
- Motored simulation
- Convective study: flow-fields have to be predicted adequately
- Statistics have been obtained sampling over 30 cycles

SBURG

UNIVERSITÄT

Comparisons of the flow field

UNIVERSITÄT DUISBURG ESSEN Offen im Denken

Institute for Combustion and Gas Dynamics VG Fluid Dynamics

Spatial trajectories of the tracers

Offen im Denken

DUISBURG

UNIVERSITÄT

- Spherical ROI around spark plug
- Particles are obtained at time of ignition
- Two runs for comparison using a full and a radius reduced by 50%

Institute for Combustion and Gas Dynamics Fluid Dynamics

Quantities experienced by tracers

- Visualization of total travelled distance and kinetic energy of the flowfield
- Transparency of the values chosen to investigate collective behavior
- High color intensity indicates a characteristic held by many tracers
- Curves reveal features like passage through manifold and valve gap

Institute for Combustion and Gas Dynamics IVG Fluid Dynamics

12

Quantities experienced by tracers

- Passive scalar is assigned for fresh gas entering the cylinder
- Old gas is assigned with 0 at the beginning of the cycle
- Spatial trajectory is colored with the time derivative of the passive scalar at the very location

Institute for Combustion and Gas Dynamics IVG Fluid Dynamics

Quantities experienced by tracers

- Scatter plots to investigate for correlations and common behavior
- Passive scalar vs. resolved kinetic energy
- Distance from spark-plug vs. Passive scalar

UNIVERSITÄT

SBURG

Offen im Denken

- Particles reaching the spark-plug during ignition have been observed regarding their seeding location
- Results are sampled over full simulation time
- Color white indicates areas where no samples reaching the sparkplug have been obtained

Institute for Combustion and Gas Dynamics Fluid Dynamics

Overview and Future work

- A robust and efficient reverse Lagrangian tracking approach has been developed and demonstrated
- The new technique enables the analysis of (convectively transported) causes of phenomena observed at a later time
- The new technique is expected to shed new light on cyclical variations
- Future work will extend the analysis to fired simulations with direct injection

Institute for Combustion and Gas Dynamics

UNIVERSITÄT DUISBURG ESSEN

Offen im Denken

Thank you for your attention!

The authors gratefully acknowledge: Fundings by DFG through FOR2687 Computational ressources through CCSS Helpful discussions with Markus Klein, Benjamin Böhm and Cooper Welch