ECFM-LES modelling with AMR for the CCV prediction and analysis in lean-burn conditions

LES4ECE 16-18/06/2021

G. Maio¹, K. Truffin¹, O. Colin¹, O.Benoit² and S. Jay¹

IFP Energies nouvelles, 1 et 4 avenue de Bois-Préau, 92852 Rueil-Malmaison, France ; Institut Carnot IFPEN Transports
 TOYOTA GAZOO Racing Europe GmbH, Chassis & Powertrain Development, Toyota Allee 7, 50858 Köln, Germany

CONTEXT: PERSPECTIVES FOR LES OF SPARK IGNITION ENGINES

MOBILITÉ DURABLE

🗖 Energies

- Extra-lean-burn technologies in modern spark-ignition engines
 - Increase combustion efficiency and tackle pollutant formation [1]
 - Attractive for the usage of alternative zero-emission fuels such as hydrogen [2]
 - High level of the CCV (cycle-to-cycle variability) can be encountered (IMEP covariance higher than 3%)
 - Need for predictive tools to reproduce CCV such as LES [3]
- LES in spark ignition engine for lean burn conditions
 - Cycle to cycle variations (deviation from the mean phase averaged cycle)
 - knock prediction
 - Air/Fuel mixing prediction
- Improve ignition description -> flame kernel development
 Objectives of the study

- Validate an LES modelling framework based on ECFM coupled with AMR, to predict CCV in spark ignition engines in extra-lean conditions
- Account for the effect of stretch/differential diffusion on the laminar flame speed, which is important in diluted flame conditions

[1] Nagasawa T, Okura Y, Yamada R, Sato S, Kosaka H, Yokomori T et al. Thermal efficiency improvement of super-lean burn spark ignition engine by stratified water insulation on piston top surface. International Journal of Engine Research 2020:146808742090816.

[2] Wang J, Duan X, Liu Y, Wang W, Liu J, Lai M-C et al. Numerical investigation of water injec-tion quantity and water injection timing on the thermodynamics, combustion and emissions in a hydrogen enriched lean-burn natural gas SI engine. International Journal of Hydrogen Energy 2020;45(35):17935–52.

[3] Using large-eddy simulation and multivariate analysis to understand the sources of combustion cyclic variability in a spark-ignition engine. Combustion and Flame 2015;162(12):4371-90.

TGR-E benchmark configuration

Mesh and numerical set-up

Overview of the Cold AERO results + Spray calibration results

Reactive LES results

CCV analysis

© 2021 | FPEN

3

Summary and perspectives

CONFIGURATION

MOBILITÉ DURABLE

[1] Luszcz P., Takeuchi K., Pfeilmaier P., Gerhardt M. et al., "Homogeneous Lean Burn Engine Combustion System Development – Concept Study" 2018, 19th Stuttgart International Symposium.

[2] Study of Ignition Processes of a Lean Burn Engine using Large-Eddy Simulation, O. Benoit, P. Luszcz, Y. Drouvin, T. Kayashima, P. Adomeit, A. Brunn, S. Jay, K. Truffin, C. Angelberger, SAE International, 2019

MESH SNAPSHOTS DURING THE DIFFERENT PHASES

Transports

NUMERICAL SET-UP

- LES solver: CONVERGE V3.0.15 [1]
- Temporal scheme: semi-implicit Crank-Nicolson (implicit_fraction:0.5)
- **Spatial scheme**: second order central (*fv_upwind_factor:0.5*)
- Turbulence modeling: Dynamic Smagorinsky model [2]
- Spray modeling set-up:
 - Primary break-up modelled with
 - Rosin-Rammler distribution imposing MSD
 KH (Kelvin-Helmholtz)-RT(Rayleigh-Taylor) secondary breakup model
 - Drop vaporization model: Frossling correlation
- AMR: based on the sub-grid progress variable criterion during the combustion stroke.
- ISSIM [3] model for ignition: (Spark advance=20.3)
- ECFM-LES model [4]:
 - Turbulent efficiency function: Bougrine
 - S_l model = Yahyaoui
 - Stretch model [5]

[1] Richards, K.J., Senecal, P.K. Pomraning, E.: CONVERGE (v2.4),. Convergent Science, Inc., Madison, WI 2017

[2] Germano, M., Piomelli, U., Moin, P., and Cabot, W.H., "A Dynamic Subgrid-Scale Eddy Viscosity Model," Physics of Fluids A, 3(7), 1760-1765, 1991. DOI: 10.1063/1.857955

[3] Colin O, Truffin K. A spark ignition model for large eddy simulation based on an FSD transport equation (ISSIM-LES). Proceedings of the Combustion Institute 2011;33(2):3097–104.
 [4] Vermorel O, Richard S, Colin O, Angelberger C, Benkenida A, Veynante D. Towards the un-derstanding of cyclic variability in a spark ignited engine using multi-cycle LES. Combustion and Flame 2009;156(8):1525–41.

[5] Benoit, O., Truffin, K., Jay, S. et al. Development of a Large-Eddy Simulation Methodology for the Analysis of Cycle-to-Cycle Combustion Variability of a Lean Burn Engine. Flow Turbulence Combust (2021).

→ validated versus PIV in Cold/Aero simulation

 \rightarrow validated versus closed vessel experimental data

 \rightarrow validated versus reactive experimental data

TGR-E benchmark configuration

Mesh and numerical set-up

Overview of the Cold AERO results + Spray calibration results

Reactive LES results

CCV analysis

Summary and perspectives

COLD AERO: LES STATISTICS COMPARISON (MEAN)

- Numerical phase-averaged velocity fields obtained from ten consecutive cycles are compared to PIV experimental data (averaged over 30 cycles) on the tumble mid-plane during the **intake** and the compression stroke.
- Velocity is non-dimensionalized by the mean piston velocity

COLD AERO: LES STATISTICS COMPARISON (MEAN)

Numerical phase-averaged velocity fields obtained from ten consecutive cycles are compared to PIV experimental data (averaged over 30 cycles) on the tumble mid-plane during the intake and the compression stroke.

MOBILITÉ DURABLE

Energies

Transports

- Good reproduction of the in-cylinder velocity distribution (tumble center location).
- Slight over-estimation in the recirculation zone
- Results confirmed from the 1D longitudinal profiles
- 9 © 2021 IFPEN

COLD AERO: LES STATISTICS COMPARISON (RMS)

• RMS of the numerical velocity fields obtained from ten consecutive cycles are compared to PIV experimental data (averaged over 30 cycles) on the tumble mid-plane during the intake and the compression stroke.

The RMS magnitudes are well captured

• The numerical field is less smooth than the experimental one \rightarrow poor statistical convergence for RMS

SPRAY CALIBRATION: CLOSED VESSEL SIMULATION

Time: 0.001000 15cm SUSTAINABLE MOBILITY CFD spray 1 ms after the 1st droplet gets out of the nozzle. 25cm 10 -20 20 Liquid Absolute penetration 30 125 -40 ₩ 2 50 100 LP[mm] 75 -60 60 50 70 -80 25 80 0 90 -20 20 -400 40 0.5 20 0.0 1.0 1.5 2.0 2.5 -20 0 Time[ms] mm y [mm]

Liquid penetration shows discrepancy in the first region, but further downstream is correctly retrieved

• Numerical results shows good quantitative and qualitative agreement with experiments

TGR-E benchmark configuration

Mesh and numerical set-up

Overview of the Cold AERO results + Spray calibration results

Reactive LES results

• CCV analysis

Summary and perspectives

AIR/FUEL MIXING

Equivalence ratio pdf distribution in cylinder as function of the CAD

 ϕ mass distribution (cylinder)

1.0 - CAD : -300.0 1.0 - CAD : -300.0 1.0 - CAD : -300.0 0.0 - C

Spray evolution and mixture formation in the cylinder mid-plane

- Spray set-up model validated in a closed vessel simulation
- With the prescribed spray set-up a good mixing quality is achieved -> almost homogeneous mixture before ignition

LES REACTIVE SIMULATION (3D/2D FLAME VISUALISATION)

MOBILITÉ DURABLE

Flame kernel evolution confirms the resolution of the flame/turbulence interaction

ADD A STRETCH MODEL : ECFM STRETCH $S_b = S_b^0 - L_b * K$

Correlation developed to account stretch effect on flame speed [1]:

[1] Benoit, O., Truffin, K., Jay, S. et al. Development of a Large-Eddy Simulation Methodology for the Analysis of Cycle-to-Cycle Combustion Variability of a Lean Burn Engine. Flow Turbulence Combust (2021).

MOBILITÉ DURABLE

15 | © 2021 IFPEN

ECFM COUPLED WITH AMR BASED ON PROGRESS VARIABLE CRITERION

MOBILITÉ DURABLE

The computational cost is strongly mitigated by using AMR in CONVERGE.

In addition to a local mesh refinement around the spark-plug, AMR allows to locally refine the computational grid to improve flame resolution without non-necessary refinement outside the reaction zone (the criterion is based on the ECFM progress variable with a minimum cell size of 0.25 mm in the flame front)

• Moderate impact of AMR on the total number of cells only in the combustion phase.

TGR-E benchmark configuration

Mesh and numerical set-up

Overview of the Cold AERO results + Spray calibration results

Reactive LES results

• CCV analysis

Summary and perspectives

LES REACTIVE: PRESSURE ENVELOPE AND ITS STATISTICS

• Pressure envelope over 30 cycles for numerical data and 1000 for experiments

- Comparison of the numerical pressure envelope with the experimental one
- Computation of the pressure statistics

LES – Multi – Cycles

LES – Statistics

- Numerical pressure envelope shows an important cycle-to-cycle variability that is confirmed by the pressure statistics (mean and standard deviation)
- However, numerical pressure signals shows an earlier ignition compared to experiments
- Difficulty to reproduce the extreme cycles

LES REACTIVE: PMAX DISTRIBUTION (MATEKUNAS DIAGRAM [1])

MOBILITÉ DURABLE

- The experimental linear behavior is correctly reproduced by numerical simulations. It confirms the capability of the LES approach to reproduce CCV
- Difficulties to reproduce boundary experimental cycles (Pmax and Pmin) \rightarrow extreme cycles
- The discrepancy in the Pmax distribution shape could be due to the lower number of cycles

[1] Matekunas FA. Modes and Measures of Cyclic Combustion Variability. In: SAE Technical Pa-per Series. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International; 1983.

LES REACTIVE: CA50VSCA2 & CA10-75VSCA50

MOBILITÉ DURABLE

• An early ignition CA2 is confirmed by the CA50-CA2 scatter plot

The linear experimental behavior and the scattering amplitude are correctly reproduced

LES REACTIVE: COMPARISON BETWEEN FAST AND SLOW CYCLES

Iso-C at C=0.5 coloured by the local velocity Cycle 17 / CAD: -10

50.0 50.0 30 30 20 10 Velocity on the spark mid-plane - 2000.0 - 2000.0 1800 1800 1600 1600 1400 1400 1200 1200 1000 1000 834.9 834.9 elocity Magnitud

Cycle 20 / CAD: -10

 The initial flame kernel development is affected by the aerodynamic field and turbulence intensity around the sparkplug and this constitutes one of the origin of the CCV.

TGR-E benchmark configuration

Mesh and numerical set-up

- Summary of the Cold AERO results
- Reactive LES results

• CONVERGE scalability test and CPU performances

Summary and perspectives

- An LES modelling framework, combining the ECFM-LES approach and AMR is proposed
- Flame stretch effect on laminar flame speed is accounted in ECFM-LES
- The LES set-up is validated, using CONVERGE V3.0 software, to predict the aerodynamic field and combustion in a super-lean spark ignition engine configuration
- A satisfactory cycle to cycle variation is observed in the numerical pressure signals. It is confirmed by comparing multi-cycle pressure statistics to the experimental ones
- Some discrepancies occur: extreme cycles prediction and Pmax distribution -> but they could be attributed to the low number of cycles

PERSPECTIVES

- Turbulent combustion model \rightarrow compute the same configuration with Thickened Flame Model (TFM)
- Investigate the origin of the cycle-to-cycle variations

PERSPECTIVES : EMD POST-PROCESSING TOOL (APPLICATION TO LES) [1]

[1]Development and Application of Bivariate 2D-EMD for the Analysis of Instantaneous Flow Structures and Cycle-to-Cycle Variations of In-cylinder Flow, Mehdi Sadeghi, Karine Truffin1, Brian Peterson, Benjamin Böhm and Stéphane Jay

2021 | FPFN

Innover les énergies

Retrouvez-nous sur :

www.ifpenergiesnouvelles.fr

@IFPENinnovation

