The Impact of Flow and Turbulence on Spray G Direct Injection LES4ECE 2021 · Injectors and Sprays C. Welch · L. Illmann · M. Schmidt · B. Böhm

Technical University of Darmstadt, Department of Mechanical Engineering, Reactive Flows and Diagnostics

How can we continue to reduce emissions?

18.10.2021 | Reactive Flows and Diagnostics – Technical University of Darmstadt | Cooper Welch

- Homogeneous direct injection sparkignition (DISI) allows us to
- control amount of fuel
- control injection timing
- control location of injection
- use in full load and speed range
- Charge cooling from evaporation
- couple with 3-way catalysts

Better understand the effects of gas velocity on early injection

18.10.2021 Reactive Flows and Diagnostics – Technical University of Darmstadt Cooper Welch

- Motivation
- Methodology
- Results
 - Engine Flow BenchSpray G
- Conclusions/Outlook

- Single-cylinder IC engine
 - ► 4-valve, pent-roof head
 - ▶ Bore, Stroke: 86 mm
- Designed to investigate phenomena and for model validation
- **Engine Test Bench**
 - ► Well-characterized BCs: Flow, T, P, rel. humidity, EGR, fuel (DI, PFI), λ , spark (V,I)
- Repeatable, reliable operation and BCs

Methodology – Flow Bench

- Simplified engine test bench
- Piston is removed
- Outlet flow duct with optical access
- Emulate intake flow without moving parts

Measurement Parameters

- Model intake flow of engine at:
 - ▶ 0.95 bar and 800 rpm
 - -270°CA: 9.21 mm stationary valve lift
- Introduce spray at varying mass flow rates (MFRs)

Operating Conditions of Test Stand

Condition	ṁ [kg/h]	<i>Τ</i> _{in} [°C]	Re
NF	0.517	21.9	178
20% MFR	18.8	22.0	6,490
50% MFR	47.1	22.9	16,200
75% MFR	70.6	23.1	24,300
100% MFR	94.1	23.1	32,400

Methodology – Spray G Injector

- Initiative by Engine Combustion Network (ECN)
- Well-characterized injector boundary conditions
- Published experimental engine data is limited:
 - ► Gutierrez et al., SAE Paper: 2018-01-0305
 - ► Geschwindner et al., Int. J. Eng. Res., 2020

Standard Spray G Conditions for Chamber (ECN*) and Engine (TUDa)

Name		p_{amb} [bar]	T _{amb} [к]	ρ _{amb} [kg/m³]	
Spray G	ECN	6	573	3.5	
	TUDa	6	525	3.98	
G2	ECN	0.5	333	0.5	
	TUDa	0.4	310	0.45	
G3	ECN	1	333	1.12	
	TUDa	0.95	310	1.07	
*https://ecn.sandia.gov/					

Comparable with flow bench injection Early Injection with 680 µs duration

18.10.2021 | Reactive Flows and Diagnostics – Technical University of Darmstadt | Cooper Welch

Methodology – Laser Diagnostics

High-speed Particle Image Velocimetry (PIV)

- Motored engine: 5°CA res. (960 Hz) for 222 cycles
- Flow Bench:12.5 kHz for 25000 consecutive vector fields

Volumetric Mie Scattering

Flow Bench: 25 kHz for 100 consecutive sprays

18.10.2021 Reactive Flows and Diagnostics – Technical University of Darmstadt Cooper Welch

Methodology – Spray Parameters

Each spray event

- Normalize by max. intensity
- Binarize with threshold ~ 11% max. intensity
- Calculate parameters
 - ► x Axial penetration
 - $\blacktriangleright \alpha$ Spray angle
 - \blacktriangleright x_{rad} Radial penetration

Results – Flow Comparison

20

25

20

30

18.10.2021 Reactive Flows and Diagnostics – Technical University of Darmstadt | Cooper Welch

Spray develops in entire field of view

18.10.2021 | Reactive Flows and Diagnostics – Technical University of Darmstadt | Cooper Welch

Results – Spray Morphology

Cycles

100% MFR

100% MFR

100% MFR

100% MFR

0.8

no

200 µs aSOI

360 µs aSOI

520 µs aSOI

680 us aSO

0.9

100% MFR

100% MFR

100% MFR

100% MFR

680 µs aSOI

200 µs aSOI

360 µs aSOI

520 µs aSOI

680 µs aSOI

Volumetric Mie Scattering with No-flow (NF)

18.10.2021 Reactive Flows and Diagnostics – Technical University of Darmstadt | Cooper Welch

Results – Spray Morphology

18.10.2021 Reactive Flows and Diagnostics – Technical University of Darmstadt Cooper Welch

Results – Symmetry

18.10.2021 Reactive Flows and Diagnostics – Technical University of Darmstadt **Cooper Welch**

Results – Axial Penetration

Greater intake velocity

- Increased axial penetration
- ► Why not for 100% MFR?

Results – Recirculation Flow

Recirculation causes

- Increased resistance to spray
- Decreased axial penetration
- Decreased left-radial penetration

20% MFR

50% MFR

75% MFR

100% MFR

NF

10 mm

Summary, Conclusions, and Outlook

- Flow bench developed for simplified investigation of phenomena
- Flow bench designed to match motored engine at 0.95 bar/800 rpm
- Flow bench coupled with direct injection allowed quantification of effects of flow on spray development
- Increased mass flow rate causes
 - Increased asymmetry towards the exhaust side
 - Increased axial penetration
- Recirculation of 100% MFR causes
 - Decreased axial penetration
 - Decreased left-side radial penetration

Outlook

- Further analyze results of spray with the motored engine, e.g., correlation between radial penetration and tumble strength
- Examine individual plumes closer, and provide validation for LES simulations in e.g., plume angle, exit velocity, entrainment, etc.

 $x_{rad, left}$ [mm]

Acknowledgments

Funding

- We kindly acknowledge generous support by Deutsche Forschungsgemeinschaft through SFB-Transregio 150 Project Number 237267381-TRR150
- C. Welch and B. Böhm acknowledge the financial support by the Fritz un Margot Faudi-Stiftung under project number 94

Authors

Lars IIImann

Benjamin Böhm

