Large-Eddy Simulations with Conjugate Heat Transfer of a Reacting Flow in an Internal Combustion Engine

Angela Wu^{1,2}, Mohammad K. Alzuabi^{2,3}, Volker Sick²

- 1. Sandia National Laboratories
 - 2. University of Michigan
 - 3. Kuwait University

Large-Eddy Simulation for Energy Conversion in electric and combustion Engines Rueil-Malmaison, France June 16 to June 18, 2021

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Acknowledgements

- This research was performed at University of Michigan during my PhD studies
- CFD Simulation support
 - Nitesh Attal (Convergent Sciences)
- Financial support
 - Gurpreet Singh, Michael Weismiller (DOE)
 - General Motors University of Michigan Collaborative Research Lab
 - NSF INTERN program
 - University of Michigan Engineering Departmental Fellowship
- Project guidance / collaboration
 - Seunghwan Keum (General Motors)

Motivation

- Engine heat transfer affects *efficiency, performance,* and *emissions.*
- Convective heat transfer controlled by the boundary layer development.
- Periodic changes in thermodynamic states throughout the cycle and large cycle-to-cycle variation (CCV) prevents a well-established boundary layer.

Typical energy split in ICEs [1].

[1] greencarcongress.com

Heat Transfer Measurements

IC engine modeling typically uses steady, isothermal boundary conditions.

Chang, J. et al. (2004), SAE-2004-01-2996,
Annand, W.J.D., Ma, T.H. (1970), Proc. of the Ins. of Mech. Engineers.

Conjugate Heat Transfer (CHT)

- Spatially and temporally varying temperatures
- Heat transfer between fluid and solid
- Shortcomings:
 - Reynolds-Averaged Navier-Stokes (RANS) models
 - Fixed engine components
 - Validation needed
- Large-eddy simulations (LES) CHT performed by Misdariis *et al.*[1]:
 - Some cyclic and spatial variations
 - Shortcomings: fixed valves, valve motion on in-cylinder flow not simulated

Spatially varying temperature on the cylinder head [1].

Previous study [2]: Multi-cycle LES with CHT with moving solid components, validated with near-wall flow, temperature, and heat flux measurements. This study: extend to fired operating condition.

Objectives

- Integrate CHT with LES for improved heat transfer predictions for fired engine operating condition to capture spatial, temporal, and cyclic variations in surface temperatures.
- Validate and assess CHT method in near-wall flow and temperature predictions with particle-image velocimetry (PIV) and planar laser-induced fluorescence (PLIF) data of the transparent combustion chamber (TCC-III) engine.
- Compare CHT to LES with uniform temperature boundary conditions.

TCC-III Engine

Near-Wall Velocity and Temperature Measurements

Engine conditions:

- 1300 RPM
- 40 kPa intake and 98 kPa exhaust manifold absolute pressure (MAP)
- 80 °C intake temperature <u>Top-down View</u>

PIV dataset: [1]

- S_2016_03_25_09
- Resolution: 0.125 mm

Note: Uncertainty of ensemble average velocity less than 10% (P. C. Ma, et al. Intl. J. Engine Research (2017)).

- [1] Greene, M. (2017). University of Michigan. PhD Thesis.
- [2] Alzuabi, M. K. (2020). University of Michigan. PhD Thesis.

3D CFD Simulations with CONVERGE

LES model: Dynamic structure model **Number of cycles:** 11 cycles, first cycle discarded

Wall models

- Werner and Wengle wall model
- Han and Reitz heat transfer model

Thermal boundary condition

- Uniform and constant surface temperature
- CHT, with supercycling

Combustion and Emissions Modeling

- G-equation model
- Laminar flame speed: Gülder correlation for propane
- Turbulent flame speed: Pitsch model, b₁ tuning
- Spark: energy source equal to 32 mJ at -18 CAD
- Extended Zel'dovich NOx model

Thermal Boundary Conditions for the Fired Uniform Temperature Model

Computational Domain CHT model

LES Model Validation

• Note: b₁ tuning was required, which affects the turbulent flame speed (Pitsch model)

$$s_t = s_l \left(1 - \frac{b_3^2 s_l \mu_t}{2b_1 \mu u'} + \sqrt{\left(\frac{b_3^2 \mu_t s_l}{2b_1 \mu u'}\right)^2 + \frac{b_3^2 \mu_t}{\mu}} \right)$$

- LES with uniform temperature BCs: $b_1 = 5.5$, CONVERGE 2.4
- LES CHT: $b_1 = 8$, CONVERGE 3.0
- More tuning of b₁ is required for LES CHT, need to simulate all 10 cycles

Bulk temperature field and early flame kernel differences due to varying surface temperatures and differences in turbulent flame speed

- CHT has a larger b₁ value than uniform temperature LES, which affects turbulent flame speed
- Surface temperature also affects combustion process

Near-wall flow fields show improvements are still needed in wall modeling approach of engine LES

- CHT: accurate flow direction at -100 and -35 CAD, but opposite flow at -20 CAD, comparable velocity magnitude
- Uniform T LES: opposite flow with higher velocity magnitude at -100 and -35 CAD, and perpendicular and stronger flow at -20 CAD
- Flow field comparisons need to be done with caution
 - Abraham [1] found flow pattern switching in the TCC engine
 - Low number of simulated cycles

[1] Abraham, P. et al, IJER, 2015.

Near-wall temperature fields also need wall modeling improvements

- Simulations predict higher temperatures than measured
- Measurements show smaller structures and the need for mesh refinement
- Simulated temperatures increase with wall distance
- Higher near-wall temperatures predicted by CHT than uniform T LES except at -100 CAD

PLIF: 145 cycles LES: 10 cycles

雨

CHT Surface Temperature Predictions

Top-down View

- Dynamics are captured
- Level of CCV after 40 CAD was overpredicted

Temporal and cyclic variations in surface heat flux

Note: experimental data filtered to reduce noise, but lowered peak heat flux from 990 kW/m²K to 579 kW/m²K

- CHT predicts largest peak heat flux of 1191 kW/m²K
- Uniform T model predicts peak heat flux of 949 kW/m²K
- CHT predicts a level of CCV closer to the measurement due to more consistent ΔT from cycle to cycle

Spark plug temperature varies with time, space, and from cycle to cycle, and increases over cycles as engine warms up, even with supercycling.

	ехр	CHT cycles 2-11	CHT cycles 5-11	Uniform T LES
IMEP ensemble avg	302 kPa	284 kPa	169 kPa	317 kPa
IMEP COV	0.85%	2%	0.86%	0.44%

Conclusions

- Near-wall predictions show improvements are needed in wall models, even with improved surface temperature boundary conditions from LES CHT. However, comparisons should be done with caution.
- CHT model predicted surface temperatures within 3% of measured cylinder head temperature.
- CHT model overpredicted peak heat flux but comparable level of CCV as the measurement.
- CHT model predicts large spatial, temporal, and cyclic variations in spark plug surface temperature ranging from 350 to 1000 K.
- Spark plug temperature increased gradually from cycle 2 to 4 even with supercycling.

Thank you for your attention

Questions?

