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Motivation

* Engine heat transfer affects
efficiency, performance, and
emissions. Typical energy split in ICEs [1].
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Heat Transfer Measurements

Engine heat transfer varies spatially and temporally [1]. Cycle-to-cycle variation in surface temperature [2].

4.0 | | T T T T T 0 I '
HCSI, CR=11, 2000rpm, A/F=14.7 |

3.0| //—s \ ( DO A o A
_ /A NS
" PISTON-SIDE || || HEAD-SIDE|

20

-
o

Heat Flux [MW/m?]
N
o

SURFACE TEMPERATURE —°C

185

o
(=)

-120 90 60 -30 0 30 60 90 120
Crank Angle [deg] de b, i, bde. td.c

CRANK ANGLE

IC engine modeling typically uses steady, isothermal boundary conditions.

[1] Chang, J. et al. (2004), SAE-2004-01-2996,
[2] Annand, W.J.D., Ma, T.H. (1970), Proc. of the Ins. of Mech. Engineers.
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Conjugate Heat Transfer (CHT)

Spatially and temporally varying temperatures Spatially varying temperature on the
Heat transfer between fluid and solid cylinder head [1].
Shortcomings:

— Reynolds-Averaged Navier-Stokes (RANS)
models

— Fixed engine components
— Validation needed

Large-eddy simulations (LES) CHT performed by
Misdariis et al.[1]:

— Some cyclic and spatial variations

— Shortcomings: fixed valves, valve motion on
in-cylinder flow not simulated

Previous study [2]: Multi-cycle LES with CHT with moving solid components, validated
with near-wall flow, temperature, and heat flux measurements.
This study: extend to fired operating condition.

[1] Misdariis, A., et al. (2015), Comb. and Flame.
@ [2] Wu, A, et al. (2019), OGST. CRF u
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Objectives

* Integrate CHT with LES for improved heat transfer predictions for fired
engine operating condition to capture spatial, temporal, and cyclic
variations in surface temperatures.

e Validate and assess CHT method in near-wall flow and temperature
predictions with particle-image velocimetry (PIV) and planar laser-
induced fluorescence (PLIF) data of the transparent combustion

chamber (TCC-IIl) engine.

e Compare CHT to LES with uniform temperature boundary conditions.



Extensive database on Deepblue
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Near-Wall Velocity and Temperature Measurements

Engine conditions: . Side View 5l';'(l\s' rMn;aZSf:-;rIZn;fecT:w .
* 1300 RPM vn;I?/ee v;(IvZUSt
e 40 kPa intake and 98 kPa exhaust \'\u u I UM
manifold absolute pressure (MAP) '-*
e 80 °Cintake temperature |
Top-down View PIV dataset: [1]

e S 2016 03 25 09

Quartz Soark e Resolution: 0.125 mm
Piston 7 par
Window T Plu?“ ¢
: ] Loi::;r:me" LIF Temperature Measurements
b ) Intake 8 x 6 mm? field-of-view Exhaust
1 . Camera valve l valve
et ) 3 Viewing
— Direction
WX\ S - <
Piston ! 1 X i
Crown ! Heat Flux W :
Probe
at x=12.1 mm
Quart? and y=33.4 mm PLIF dataset: [2]
Cylinder e Resolution: 0.1 mm

Note: Uncertainty of ensemble average velocity less than 10% (P. C. Ma, et al. Intl. J. Engine Research (2017)).
[1] Greene, M. (2017). University of Michigan. PhD Thesis.
[2] Alzuabi, M. K. (2020). University of Michigan. PhD Thesis.
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3D CFD Simulations with CONVERGE

LES model: Dynamic structure model
Number of cycles: 11 cycles, first cycle discarded

Wall models
* Werner and Wengle wall model
e Han and Reitz heat transfer model

Thermal boundary condition
e Uniform and constant surface temperature
e CHT, with supercycling

Combustion and Emissions Modeling

* G-equation model

e Laminar flame speed: Gllder correlation for propane
* Turbulent flame speed: Pitsch model, b, tuning

e Spark: energy source equal to 32 mJ at -18 CAD

* Extended Zel’'dovich NOx model

® rr
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CFD SOFTWARE
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Thermal Boundary Conditions for the Fired
Uniform Temperature Model
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Computational Domain CHT model
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LES Model Validation
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— LES with uniform temperature BCs: b, = 5.5, CONVERGE 2.4

— LES CHT: b, =8, CONVERGE 3.0
e More tuning of b, is required for LES CHT, need to simulate all 10 cycles
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Bulk temperature field and early flame kernel differences due to varying
surface temperatures and differences in turbulent flame speed
Uniform T LES LES + CHT

e CHT has a larger b, value than uniform temperature LES, which affects turbulent flame speed
e Surface temperature also affects combustion process

@ CRE ®













Near-wall flow fields show improvements are still needed in
wall modeling approach of engine LES

-100 CAD aTDCc -35 CAD aTDCc -20 CAD aTDCc

e CHT: accurate flow direction
at -100 and -35 CAD, but
opposite flow at -20 CAD,
comparable velocity
magnitude

e Uniform T LES: opposite flow
with higher velocity
magnitude at -100 and -35
CAD, and perpendicular and
stronger flow at -20 CAD

 Flow field comparisons need
to be done with caution

e Abraham [1] found flow
pattern switching in the
TCC engine

e Low number of
simulated cycles

PIV
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[1] Abraham, P. et al, IJER, 2015.
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Near-wall temperature fields also need wall modeling improvements

-100 CAD aTDCc -35 CAD aTDCc -20.7 CAD aTDCc

Simulations predict higher
temperatures than
measured
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CHT Surface Temperature Predictions

Experiment

—

13 K or -3% difference
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Temporal and cyclic variations in surface heat flux

Note: experimental data filtered 15 x10°

to reduce noise, but lowered ——EXP

peak heat flux from 990 kW/m?K = = ~uniform T LES
LES + CHT

to 579 kW/m2K

e CHT predicts largest peak heat
flux of 1191 kW/m2K

e Uniform T model predicts peak
heat flux of 949 kW/m?2K

e CHT predicts a level of CCV
closer to the measurement
due to more consistent AT \
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CHT model predicts spatial, temporal, and cyclic
variation of surface temperature at the spark plug

Spatial variation

i Cycle-to-cycle variation Temporal variation
Uniform TLES Cycle 2-11 Cycle 7
T (K)
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-20 CAD

-10 CAD

0 CAD

Spark plug temperature varies with time, space,
and from cycle to cycle, and increases over cycles
as engine warms up, even with supercycling.
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Conclusions

Near-wall predictions show improvements are needed in wall models, even
with improved surface temperature boundary conditions from LES CHT.
However, comparisons should be done with caution.

CHT model predicted surface temperatures within 3% of measured cylinder
head temperature.

CHT model overpredicted peak heat flux but comparable level of CCV as the
measurement.

CHT model predicts large spatial, temporal, and cyclic variations in spark plug
surface temperature ranging from 350 to 1000 K.

Spark plug temperature increased gradually from cycle 2 to 4 even with
supercycling.
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