

LARGE EDDY SIMULATIONS OF MULTI-CYCLE SACI COMBUSTION WITH AND WITHOUT PARTIAL FUEL STRATIFICATION

CHAO XU, SIBENDU SOM

Argonne National Laboratory

Prepared for the Virtual LES4ECE Meeting June 17-18, 2021

ACKNOWLEDGMENTS

- US DOE's Co-Optima program: Gurpreet Singh, Kevin Stork, Michael Weismiller, and Alicia Lindauer
- DOE-funded university project led by Matthias Ihme (Stanford), Tianfeng Lu (Uconn), Muhsin Ameen (ANL), Pinaki Pal (ANL)
- Magnus Sjöberg (Sandia National Lab)
 for *experimental data*
- Convergent Science for *software licenses*
- ANL's LCRC clusters for HPC resources

Co-Optimization of Fuels & Engines

CHALLENGES IN MULTI-MODE COMBUSTION MODELING

- Lean/dilute spark-assisted compression ignition (SACI) is a promising multi-mode combustion strategy to improve engine efficiency and reduce emissions
 - Spark-induced flame propagation for better phasing control
 - Compression-induced auto-ignition for reduced combustion duration
- Modeling challenges
 - Models needed for both flame propagation and auto-ignition
 - Need for large detailed chemistry in both low-T and high-T regions
 - Need for flame-wall interaction model
 - Sensitive to boundary conditions, e.g., wall temperatures
 - Sensitive to fuel (compared with premixed flame modeling)
- Approaches:

- RANS: low-fidelity, suitable for design optimization
- LES: predictive modeling, reasonable computational cost
- DNS: new physical insights, validating RANS/LES models

LEAN SACI OPERATIONS: WELL MIXED VS. PARTIAL FUEL STRATIFICATION ASSISTED

- When operating SACI in lean mixtures, conventional well-mixed operation requires advanced spark timing, and exhibits large cycle-to-cycle variability (CCV)
- Partial fuel stratification (PFS) can improve the combustion stability of lean operation by late-injecting small amount of fuel just before spark timing

Well-mixed SACI (WM-SACI)

PFS-assisted SACI (PFS-SACI)

ENGINE SPECIFICATION AND OPERATING CONDITIONS

Engine Specification

Parameter	Value
Bore	86.0 mm
Stroke	95.1 mm
Displacement	0.552 liters
Connecting Rod Length	166.7 mm
Piston Pin Offset	-1.55 mm
Compression Ratio	12:1

Operating Conditions

Parameter	WM-SACI	PFS-SACI	
Engine Speed	1000 rpm	1000 rpm	
Fuel/Air Equivalence Ratio	0.55	0.5	
IMEP (Nominal, Net)	421 kPa	545 kPa	
COV	2.2%	1.4%	
Intake Temperature	100 °C	100 °C	
Coolant Temperature	90/75 °C	90 °C	
Intake Pressure	87.0 kPa	110.95 kPa	
Exhaust Pressure	100.1 kPa 100.1 kPa		
Injection Pressure	170 bar 166 bar		
Injected Mass	17.8 mg	Early: 20.34 mg Pilot: 0.84 mg	
Injection Timing, CA ATDC	-318, -303, -288	Early: -308, -288, -268 Pilot: -28	
Injection Duration (each)	444 µs	Early: 437 µs Pilot: 210 µs	
Spark Timing, CA ATDC	-57	-27	
Fuel	E30	E30	

MODELING APPROACHES

CFD code	CONVERGE 2.4				
Turbulence	Dynamic structure LES model				
Spray	 KH-RT breakup NTC collision model (model constant validated against ECN Spray G) Frossling evaporation model 				
Combustion	 Hybrid G-equation/WSR model Flame propagation: G-equation with tabulated flame speeds Auto-ignition: Well-stirred reactor (WSR) multi-zone model 				
Spark ignition	Spherical energy source with mesh refinement (0.125-0.25 mm)				
Mesh	 Base: 4 mm; In-cylinder base: 1 mm; Near spark: 0.25 mm; Wall embedding: 0.5 mm; Spray embedding: 0.25 mm AMR based on V&T: 0.5 mm Peak cell count: 1.6 M 				
Fuel	E30 (ANN-based TPRF-ethanol surrogate)				
Chemistry	164-species skeletal mechanism Exhaust Piston Argonne				

MODELING FLAME PROPAGATION AND AUTOIGNITION

Track turbulence flame propagation using the G-equation model

- Eliminate the need of resolving the thin flame structures
- Model turbulence-chemistry interaction (TCI) using Peter's turbulent flame speed correlation:

$$S_T = f(S_L, u'/S_L, Da)$$
 $Da = Reaction rate/Mixing rate$

• Tabulate laminar flame speed (S_L) as function of p, ϕ , T_0 , and local residual gas fraction (RGF) using detailed chemistry

Predict end-gas auto-ignition using a hybrid approach

 With G identifying the end gas, well-stirred reactor (WSR) model is employed to model end-gas autoignition, and post-flame behaviors

LES OF WELL-MIXED SACI: FLAME DYNAMICS

SACI flame dynamics

Pressure and heat release rate traces

- I0 consecutive CFD cycles vs. 500 experimental cycles
- Pressure and heat release traces from simulation agree well with experimental data
- LES reveals detailed flame and autoignition dynamics in SACI combustion

WELL-MIXED SACI: LES VS RANS

- LES is able to capture both deflagrative (1st AHRR peak) and auto-ignitive (2nd AHRR peak) combustion phasing, as well as CCV, while RANS fails
- Computational cost of the LES model is only slightly higher than RANS

	Quantity	Experiment	LES	RANS
	P _{max} , MPa	3.93	4.14	4.17
	COV of P _{max} , %	10.54	11.72	4.33
	IMEP _g , kPa	446	513	497
	COV of IMEP $_{\rm g}$, %	3.82	2.42	0.90
	CA10	-8.0	-11.6	-15.6
	CA50	3.54	3.50	0.68
	CA90	22.3	18.5	20.4

LES OF PFS-ASSISTED SACI: STRUCTURE AND THERMAL AND MIXTURE STRATIFICATION

LES of PFS-assisted SACI

Isosurfaces: Purple: stoichiometric Blue: flames; Red: auto-ignition Thermal stratification

Mixture stratification

- Presence of different combustion modes: premixed flame propagation in stratified mixture and end-gas auto-ignition
- Evolution of temperature and equivalence ratio PDFs highlights the unique mixing process in PFS and its potential effects on combustion
 - Increased thermal stratification (wall heat transfer), but reduced mixture stratification (continuing mixing) with time after an initial jump

Xu, Som & Sjöberg, JERT 2021

PFS-SACI: FLAME KERNEL INITIATION AND DEVELOPMENT

Transition from diffusion flame to lean premixed flame is well captured by CFD

11

 While RANS predicts the near-spherical flame development, LES shows more wrinkled and stretched flame fronts (similar to experiments)

Argonne

blue: [OH][CH₂O]

PFS-ASSISTED SACI: LES VS RANS IN CRANK ANGLE SPACE

- LES predicts pressure and heat release rate (AHRR) traces very well, in terms of both mean and CCV
- RANS does not accurately capture first AHRR and underpredicts CCV

12

 Slightly lower AHRR at the start of combustion, probably due to insufficient ignition/combustion modeling
 Xu, Som & Sjöberg, JERT 2021

PFS-ASSISTED SACI: LES VS RANS IN MASS BURNED SPACE

- LES significantly improves the prediction of both mean and variation
 - Improved prediction of combustion phasing attributed to both deflagration and autoignition in the mass burned space
 - CCV predicted by LES matches what is observed in experiments
 - Consistent with the results from well-mixed charge operation
- Runtime: 1.5-2 days/cycle on 108 cores (36 hrs for RANS and 42 hrs for LES on average)

Blue dashed lines: CFD mean

FUEL PROPERTY SENSITIVITY OF WM-SACI AND PFS-SACI

- High-fidelity LES-based CFD model enables systematic and efficient sensitivity analysis of fuel properties (e.g., HoV and S_L)
- Heat of vaporization (HoV) plays an important role by modifying the unburned gas temperature and thus combustion phasing; HoV sensitivity of the PFS operation is comparable with the well-mixed charge operation
- Laminar flame speed (S_L) directly controls the initial ramp-up of heat release rate in deflagration and thus affecting subsequent auto-ignition; S_L sensitivity of the PFS operation is smaller than the well-mixed charge operation

14

S, sensitivity

50

40

30

20

10

+10%

-SL+30%

SL+50%

J/deg

AHRR,

PFS operation

 $\phi = 0.5$

ST = -27 °CA

= constant

NEED OF FURTHER ASSESSMENT OF THE HYBRID COMBUSTION MODEL FOR PFS-ASSISTED SACI OPERATIONS

- Triple flames in PFS-SACI?
 - LES predicts mixed non-premixed (diffusion) and premixed combustion modes, suggesting triple flames exist. But
 - Does the diffusion flame really exist?
 - Is the current hybrid combustion model sufficient to capture different combustion modes?
- Underprediction of AHRR at the start of combustion
 - What are the causes?

2D DNS OF PFS WITH REALISTIC MIXTURE DISTRIBUTION AND PISTON MOTION

- 2D DNS is further employed to better understand the combustion modes right after pilot injection (sprayinduced flow field, strong mixture stratification, etc.) for PFS-assisted SACI operation, and thus to evaluate the applicability of the LES hybrid G-equation/WSR combustion model (developed by the authors as part of the Co-Optima program)
- DNS using Nek5000¹, a highly scalable spectral element CFD code developed at Argonne National Lab
 - A TPEF-E surrogate fuel for E30 with 90-species reduced mechanism

- Laminar flame thickness for initial condition: $\delta_f = 70 \ \mu m$
- ¹2019 AMR presentation, ACE126, Muhsin Ameen
- DNS resolution in Nek5000: $\Delta x = 4.7 \mu m \approx \delta_f / 15$, LES resolution in CONVERGE: $\Delta x_{\min} = 125 \mu m \approx 1.8 \delta_f$
- Compression accounted for by imposing experimental pressure traces through artificial mass injection
- Initial conditions (p, T, u, Y) directly from LES of PFS SACI at -24 °CA: $p \approx 16$ bar, $\phi_{back} \approx 0.48$, $T_0 \approx 750$ K (sub-grid turbulence neglected)
- To achieve affordable DNS, computational domain and velocity are scaled with Damköhler number unchanged

FLAME STRUCTURE DURING FLAME KERNEL GROWTH

Black line: $\phi = 1$

Flame structure

- Mixture is highly stratified
- Flame islands are centered at stoichiometric mixtures
- Heat release rate (HRR) layers are observed on both lean and rich sides
- Weak HRR layers are observed along the stoichiometric line
- HRR structure suggests presence of triple flames (green circles)

FLAME STRUCTURE DURING FLAME KERNEL GROWTH: CEMA

- Lean and rich premixed flames confirmed by chemical explosive mode analysis (CEMA): $\lambda_e = 0$
- Regions centered at $\lambda_e = 0$ with two times flame thickness is identified as premixed mixtures
- Premixed combustion is dominant; contribution to total HRR from nonpremixed flames is non-negligible

EFFECT OF PFS ON INITIAL FLAME DEVELOPMENT

19

Black: premixed fronts Green: stoichiometric

 Same triple flame features are predicted by DNS and the hybrid G-equation/WSR LES model, demonstrating the applicability of the hybrid model

ASSESSMENT OF G-EQUATION MODEL IN PFS: DISPLACEMENT SPEED

- During the initial stage of flame kernel growth in stratified mixtures, local displacement speed is found much larger than the unstretched counterpart in 1D laminar flames, except for very lean mixtures
 - Possible reasons: (1) Lewis number effects with flame stretch; (2) Pyrolysis effects (higher flame speeds of H₂ and C₂H₄)
- This suggests that in PFS, these two effects need to be accounted for in the flame speed data, which is a key input in the G-equation model

SUMMARY AND CONCLUSIONS

- A large eddy simulation (LES) based CFD modeling framework was developed and successfully applied to multi-cycle SACI engine simulations with and without partial fuel stratification (PFS)
- The LES model, leverages a hybrid G-equation/WSR combustion model, accurately predicts the pressure and HRR traces in both well-mixed SACI and PFS-assisted SACI
- The LES model shows significant accuracy gains compared with RANS models, with only a slight increase in computational cost
- The LES model identifies a key difference between WM-SACI and PFS-SACI in fuel property impacts: PFS-SACI is found more tolerable to SL perturbation than WM-SACI
- DNS with a simplified 2D geometry but realistic thermodynamic conditions provide new insights to the initial flame growth in PFS operation:
 - Triple flames are observed during the initial stage, with nonpremixed flames contributing non-negligibly to the total heat release
 - Local displacement speeds are much larger than the unstretched flame speed counterpart, suggesting the important roles of thermodiffusive instability and fuel pyrolysis
- Future work: improve the G-equation model using the DNS insights in PFS-SACI

<u>Chao Xu</u>, Muhsin Ameen, Pinaki Pal, Sibendu Som, Direct numerical simulation of partial fuel stratification assisted lean premixed combustion for assessment of hybrid G-equation/well-stirred reactor model, *ASME 2021 Internal Combustion Engine Division Fall Technical Conference*, submitted.

<u>Chao Xu</u>, Magnus Sjöberg, Sibendu Som, Large eddy simulation of lean mixed-mode combustion assisted by partial fuel stratification in a spark-ignition engine, *Journal of Energy Resources Technology*, 143:7 (2021) 072304.

<u>Chao Xu,</u> Pinaki Pal, Xiao Ren, Magnus Sjöberg, Noah Van Dam, Yunchao Wu, Tianfeng Lu, Matthew McNenly, Sibendu Som, Numerical investigation of fuel property effects on mixed-mode combustion in a spark-ignition engine, *Journal of Energy Resources Technology*, 143:4 (2021) 042306.

<u>Chao Xu</u>, Zongyu Yue, Sibendu Som, A hybrid flamelet model for predicting mixed-mode combustion in a spark-ignition engine, Spring Technical Meeting Central States Section of The Combustion Institute, 2020.

Thank you!

chaoxu@anl.gov

Argonne

www.anl.gov